
 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

ASSESSING THE EFFECTIVENESS OF CUMULATIVE SUM 
NORMAL- AND POISSON-BASED TESTS FOR DETECTING 

RARE DISEASES 
 

by 
 

Manuel E. Ganuza  
 

December 2010 
 

 Thesis Advisor: Ronald D. Fricker, Jr. 
 Second Reader: Krista D. Hanni 

Approved for public release; distribution is unlimited 

 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 

1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
December 2010 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE 
Assessing the Effectiveness of Cumulative Sum Normal- and Poisson-Based Tests 
for Detecting Rare Diseases 

6. AUTHOR(S)  Manuel E. Ganuza 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Threat Reduction Agency 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government.  IRB Protocol number ________N.A.________.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)  
The early detection of a rare disease outbreak is of vital importance in public health and national defense.  The six 
Category A biological agents designated by the Centers for Disease Control and Prevention are causal agents of rare 
diseases.  The Francisella tularensis is one of these and is the causal agent of the tularemia disease.  Tularemia is 
used as the motivating problem to evaluate and compare the effectiveness of the normal and Poisson-based CUSUM 
in the early detection of an outbreak using simulated rare disease data based on its theoretical behavior at varying 
occurrence outbreak means.   

In this study, a mean relationship between the nonoutbreak λ0 and outbreak λ1 means was found, λ1 = 7.40 λ0.  
Simulations were run to study the mean relationship in three cases: one theoretical case, where the normal- and 
Poisson-base CUSUM are exactly equal; and two other extreme cases.  The computational results show that when λ1 
is very close to λ0 the normal-based CUSUM system behaves improperly resulting in early detection delays, when λ1 
is equal or greater than λ0 the normal- and Poisson-based CUSUM behave almost equally if the threshold for the 
normal-based CUSUM is selected properly.  Methods to determined proper thresholds are also given. 
 

15. NUMBER OF 
PAGES  

79 

14. SUBJECT TERMS  
Biosurveillance, Rare Disease, Tularemia, Cumulative Sum, CUSUM  

16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 



 ii

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii

Approved for public release; distribution is unlimited 
 
 

ASSESSING THE EFFECTIVENESS OF CUMULATIVE SUM NORMAL- AND 
POISSON-BASED TESTS FOR DETECTING RARE DISEASES 

 
 

Manuel E. Ganuza 
Lieutenant Commander, United States Navy 

B.S., Instituto Universitario Politecnico de las Fuerzas Armadas Nacionales de 
Venezuela, 1991 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 
 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
December 2010 

 
 
 

Author:  Manuel E. Ganuza 
 
 
 

Approved by:  Ronald D. Fricker, Jr., PhD 
Thesis Advisor 

 
 
 

Krista D. Hanni, PhD 
Second Reader 

 
 
 

Robert F. Dell, PhD 
Chairman, Department of Operations Research 



 iv

THIS PAGE INTENTIONALLY LEFT BLANK 



 v

ABSTRACT 

The early detection of a rare disease outbreak is of vital importance in public health and 

national defense.  The six Category A biological agents designated by the Centers for 

Disease Control and Prevention are causal agents of rare diseases.  The Francisella 

tularensis is one of these, and is the causal agent of the tularemia disease.  Tularemia is 

used as the motivating problem to evaluate and compare the effectiveness of the normal 

and Poisson-based CUSUM in the early detection of an outbreak, using simulated rare 

disease data based on its theoretical behavior at varying occurrence outbreak means.   

In this study, a mean relationship between the nonoutbreak λ0 and outbreak λ1 

means was found, λ1 = 7.40 λ0.  Simulations were run to study the mean relationship in 

three cases: one theoretical case, where the normal- and Poisson-base CUSUM are 

exactly equal; and two other extreme cases.  The computational results show that when λ1 

is very close to λ0 the normal-based CUSUM system behaves improperly, resulting in 

early detection delays; when λ1 is equal or greater than λ0 the normal- and Poisson-based 

CUSUM behave almost equally if the threshold for the normal-based CUSUM is selected 

properly.  Methods to determined proper thresholds are also given. 
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EXECUTIVE SUMMARY 

Biosurveillance is a critical component of public health as well as national defense and 

homeland security programs.  In particular, early detection of naturally-occurring 

diseases and bioterrorist attacks—in human and animal populations, food, water, 

agriculture, and the environment in general—is essential for timely response in order to 

mitigate and reduce the consequences of such an outbreak or attack.   

To address these threats, the Department of Defense, as well as the Department of 

Human Health and Services, have implemented various biosurveillance systems.  These 

systems rely on statistical algorithms for disease early detection.  Many of the algorithms 

in use implicitly or explicitly assume the data is normally distributed; however, most 

syndromic surveillance data is discrete (usually daily counts of syndromes or disease) and 

thus, by definition, are not normally distributed.  

This thesis compares the performance of two variants of the cumulative sum 

(CUSUM) algorithm, one based on the normal distribution, and the other based on the 

Poisson distribution.  The latter is likely to be more appropriate when monitoring for rare 

diseases.  The comparison is conducted assuming Tularemia is the agent being monitored 

by the biosurveillance system.  Tularemia is listed as a Category A agent by the Centers 

for Disease Control and Prevention because of its virulence and capability for 

weaponization.  However, Tularemia also occurs naturally, though very rarely, with 

about 125 diagnosed cases per year in the United States. 

The results of this research show that (incorrectly) monitoring a rare disease such 

as Tularemia with a CUSUM based on the normal distribution results in either an 

excessive number of false positive signals or a delay in detecting an outbreak (in 

comparison to a CUSUM based on the Poisson distribution).  The delays observed in this 

research were from 5 to 15 days.  Thus, to monitor a rare disease such as Tularemia, a 

Poisson-based CUSUM should be included in biosurveillance systems.   
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I. RARE DISEASES IN PUBLIC HEALTH AND NATIONAL 
DEFENSE 

Schoenbach and Rosamond (2000) define a disease as a definite pathological 

process having a characteristic set of signs and symptoms.  The disease etiology (i.e., 

cause), pathology (i.e., manifested symptoms), and prognosis (i.e., expected outcome) 

may be known or unknown.  In epidemiology, diseases are thought of as processes where 

the natural history of disease describes the uninterrupted progression in a host of the 

disease’s biological development from the moment it is initiated by causal agent 

exposure.  Infectious diseases are transmissible from human-to-human or animal-to-

human, spread geographically and or increase the size of the infected population due to 

the capability of being communicable by infection (Dorland’s Medical Dictionary, 2007).  

Infectious diseases may be due to organisms ranging in size from viruses to parasitic 

worms, and which act as causal agents that get inside a host, human or animal and cause 

disease.   

The study of infectious disease has unique challenges.  Infectious diseases that 

naturally occur as epidemic diseases are easy to study as each occurrence represents a 

form of natural experiment and provides a contrast between before and after.  In the case 

of an endemic infectious disease,1 there is no obvious contrast to stimulate perception of 

new events or new modes of living that could have introduced the disease.  Rare and new 

diseases are more difficult because there are very few events to study (Schoenbach & 

Rosamond, 2000).  These rare and new infectious diseases are called emerging infectious 

diseases. 

Morse (1995) gave a formal and accepted definition for an emerging infectious 

disease: “infections that have newly appeared in a population or have existed but are 

rapidly increasing in incidence or geographic range.”  Morse (1995) stresses the 

importance of recognizing the abundance of new infectious diseases with zoonoses (i.e., 

animal) origin “the zoonotic pool—introductions of infections from other species to 

 
1 A disease is said to be endemic in a population when the disease naturally occurs in that population 

without the need for external exposure. 
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humans—is an important and potentially rich source of emerging diseases; periodic 

discoveries of new zoonoses suggest that the zoonotic pool appears by no means 

exhausted.” 

The early detection of emerging infectious diseases is of vital concern in both 

public health and national defense.  Public health has historically been concerned with the 

control and eradication of infectious diseases in order to prevent or minimize the impact 

of natural disease outbreaks on the general population.  In contrast, national (and 

homeland) defense has been more concerned with the use of biological agents by 

adversaries as a means of inflicting harm, terror, and economic disruption on the general 

population, military forces, or both.  Surveillance and detection of biological agents, 

either naturally occurring or man-made, is where public health and national 

defense/homeland security interests converge.  The Centers for Disease Control and 

Prevention (CDC) has designated six biological agents, including pathogens that are 

rarely seen in the United States, as Category A agents.  These are high-priority agents 

that include organisms that pose a risk to national security because they can be easily 

disseminated or transmitted from person to person, result in high mortality rates, have the 

potential for major public health impact, might cause public panic and social disruption 

and/or require special action for public health preparedness (CDC, 2010). 

Table 1 lists the six Category A biological agents.  Inglesby et al. (1999, 2002) 

studied anthrax; Clostridium botulinum toxin was studied by Arnon et al. (2001); 

Inglesby et al. (2000) studied the plague; samllpox was studied by Henderson et al. 

(1999); Dennis et al. (2001) studied tularemia and Borio et al. (2002) studied 

hemorrhagic fever viruses. 

 

 

 

 

 



Disease Common Name Biological Agent Name Remarks 

Anthrax Bacillius anthracis 
Bacteria, Inglesby et al. (1999) and 
Inglesby et al. (2002) 

Botulism Clostridium botulinum Bacteria toxin, Arnon et al. (2001) 
Plague Yersinia pestis Bacteria, Inglesby et al. (2000) 

Smallpox Smallpox 
Genus orthopoxvirus, Henderson et al. 
(1999) 

Tularemia Francisella tularensis Bacteria, Dennis et al. (2001) 

Viral Hemorrhagic Fevers (VHF) 

Filoviridae 
Arenaviridae 
Bunyaviridae 
Flaviviridae 

Four distinct family viruses, Borio et 
al. (2002) 

Table 1.   List of Category A Biological Agents (CDC, 2010) 

A. SURVEILLANCE AND DETECTION 

Biosurveillance is a critical component of public health and homeland security 

programs, where early warning, detection, and recognition of infectious diseases—in 

human and animal populations, food, water, agriculture, and the environment in 

general—is essential for timely response in order to mitigate and reduce the 

consequences of a disease outbreak.  Traditional biosurveillance and related 

epidemiological methods, such as routine analyses of birth and death or infectious disease 

reports, do not achieve the necessary and desired speed of detection.  In an effort to 

achieve the requisite of early detection capability, these traditional health methods have 

expanded to include the surveillance and analysis of non-specific health and health-

related data.  The idea is that these types of data might provide advance indicators of 

disease activity and threats to human or animal health (Fricker, 2010a) 

Epidemiology, as a multidisciplinary science, studies health and disease in human 

populations.  Traditionally, epidemiology is an applied research discipline focused on 

understanding the causes and effects of disease.  Over time, epidemiology has diversified 

into many forms and one of particular interest is epidemiologic surveillance.  See 

Schoenbach and Rosamond (2000); and Bohpal (2002).  Homeland Security Presidential 

Directive 21 (HSPD-21) defines epidemiologic surveillance as “the process of actively 

gathering and analyzing data related to human health and disease in a population in order 

 3



 4

to obtain early warning of human health events, rapid characterization of human disease 

events, and overall situational awareness of disease activity in the human population.”  

Epidemiologic surveillance is therefore a subset of biosurveillance focused on human 

populations.  Syndromic surveillance is a subset of epidemiologic surveillance that uses 

non-specific health data to identify disease outbreaks as early as possible.  See Fricker 

(2010a, 2010b, 2010c, 2008) for additional information about biosurveillance, 

epidemiologic surveillance, and syndromic surveillance. 

According to Schoenbach and Rosamond (2002), in addition to the symptomatic 

period, a disease has two important periods, the presymptomatic and the postmorbid.  The 

postmorbid period begins at the end of disease pathological and clinical course, in other 

words it is the aftermath of the disease (Seiger, 1961).  The presymptomatic period is the 

time between infection and the clinical manifestations of the disease occur.  For 

infectious diseases, there are two important events in the presymptomatic period, disease 

detection and the onset of infectiousness (Schoenbach & Rosamond, 2000).  The ideal 

syndromic surveillance system would detect an infectious disease when it is 

presymptomatic and prior to the onset of infectiousness (Fricker, 2010a). 

As previously mentioned, syndromic surveillance is a more specific type of 

epidemiological surveillance, with the fundamental objective of identifying illness 

clusters early, before diagnoses are confirmed and reported to public health agencies.  

The goal is to mobilize a response as early and rapidly as possible in order to reduce 

morbidity (i.e., disease incidence) and mortality.  As Henning (2003) points out, the 

ability of syndromic surveillance to detect outbreaks earlier than conventional 

surveillance methods depends on such factors as the size of the outbreak, the population 

dispersion of those affected, data sources and syndrome definitions used, surrogate data 

sources, non-specific disease syndromes, the criteria for investigating threshold alerts, 

and the health-care provider’s ability to detect and report unusual cases.. 
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B. ISSUES IN BIOSURVEILLANCE 

An epidemic, endemic, or other large outbreak of an emerging infectious disease 

can be the result of natural causes, warfare, or terrorism (i.e., it can be either naturally 

occurring or intentional).  At the initial stages of the outbreak, the causes of the outbreak 

may be unclear.  However, as just described, the early detection of a disease in a 

population is of interest to public health and national defense officials so that measures 

can be taken to mitigate the effect or effects of the outbreak. 

Biosurveillance systems rely on statistical algorithms for disease early detection.  

Their use presents various challenges related to data availability, data quality, algorithm 

appropriateness and effectiveness, and other factors.  See Fricker (2010b), Fricker and 

Rolka (2006) and Shmueli and Burkom (2010) for additional discussion.  In terms of 

algorithm appropriateness, many of the algorithms in use implicitly or explicitly assume 

the data is normally distributed; however, most syndromic surveillance data is discrete 

(usually daily counts of syndromes or disease) and thus by definition are not normally 

distributed. This limitation is sometimes overcome by monitoring the residuals of a 

model used to account for systematic effects in the data.  For further discussion, see 

Hagen (2010); Fricker, Hegler and Dunfee (2008); and Fricker, Knitt and Hu (2008). 

However, there are situations in which the use of an algorithm that assumes 

normality is inappropriate.  For example, naturally occurring rare diseases will not follow 

the normal (Gaussian) distribution, nor will the residuals from a model likely be normally 

distributed.  However, numerous biosurveillance systems blindly use statistical 

algorithms based in the normal distribution without assessing whether the data to which 

they are applying it meet this assumption. 

The use of inappropriate algorithms in a biosurveillance system may cause 

excessive numbers of false signals of an outbreak that results in: (1) unnecessary use of 

limited medical and public health resources and (2) a loss of confidence in the 

biosurveillance system.  Inappropriate use may also delay the detection of an outbreak, 
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which gives more time for the emerging infectious or rare disease to spread within the 

population and spread out geographically, both making the disease more difficult to 

control and increasing its economic impact. 

C. MOTIVATING PROBLEM 

This thesis assesses the performance of a particular statistical algorithm for 

detecting a rare disease.  Because the disease is rare, the daily counts of occurrence are 

usually zero and only during an outbreak do the counts tend to be positive. 

For this study, tularemia was chosen as the disease of interest.  Tularemia is of 

zoonotic origin and is caused by a bacterium named Francisella tularensis (F tularensis).  

It is naturally occurring and is one of the most infectious pathogenic bacteria known, 

requiring inoculation or inhalation of just 10 to 50 organisms of the most virulent and 

infectious subspecies to cause disease.  Humans become incidentally infected through 

diverse environmental exposures and can develop severe and sometimes fatal illness with 

a 30% to 60% mortality rate if left untreated.  There is no human-to-human transmission, 

and it is one of the pathogens monitored by the BioWatch aerosol surveillance program 

for potential bioterrorist attacks (Barns, Grow, Okinaka, Keim, & Kuske, 2005).  The 

Centers for Disease Control and Prevention has designated F. tularensis a Category A 

agent for it extreme infectivity, ease of dissemination, and substantial capacity to cause 

illness and death (CDC, 2010). 

Tularemia research continues to be of importance in public health and national 

defense.  For example, the Biomedical Advanced Research and Development Authority 

(BARDA) announced the decision from the U.S. Department of Health and Human 

Services (DHHS) to invest a total of $64 million to further the development of a new 

broad spectrum antibiotic for treating plague, tularemia, and various resistance infections 

(BARDA, 2010). 
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II. TULAREMIA 

Tularemia is colloquially known as rabbit fever or deer fly fever.  Tularemia was 

first identified in 1911, during an outbreak investigation in Tulare County, California, for 

which it has been named.  The Francisella tularensis bacterium has various 

characteristics that make it effective for development and use as a biological weapon, 

including the virulence, infectiousness, and genetic manipulation (Davis, 1999; Dennis et 

al., 2001), as well as its ability to survive in mud or water for at least a year (Barns et al., 

2005).  The Center for Infectious Disease Research and Policy (CIDRAP), 

http://www.cidrap.umn.edu, at the University of Minnesota, provides a large number of 

references and information related to infectious diseases and those biological agents with 

possible use in bioterrorism. 

A. SUBSPECIES 

F. tularensis subspecies can be differentiated by biochemical and molecular tests.  

The four well known subspecies are F tularensis subs tularensis (Jellison type A), F 

tularensis subs holarctica (Jellison type B), F tularensis subs mediaasiatica and F. 

tularensis subs novicida (CIDRAP, 2010) 

The most virulent of the known subspecies is Jellison type A, found in North 

America, with a fatality rate of up to 30% before the introduction of antibiotic regimens, 

and a low fatality rate with the appropriate antibiotic therapy.  Jellison type B is less 

virulent and is the prevalent form of tularemia, found in North America and elsewhere, 

with a low fatality rate even without treatment.  F. tularensis subs novicida (the mildest 

presentation) is the rarest form of tularemia and is typically associated with waterborne-

acquired infection (Chu, Mead, & Sjöstedt, 2010; Sjöstedt, 2010).  Jellison type A 

incubation period is 3 to 5 days (range 1 to 14 days) after inoculation and it is the more 

likely strain to be used as a biological agent (CIDRAP, 2010). 

http://www.cidrap.umn.edu/


The clinical presentation of symptoms may be confused with those of the plague 

and other infectious diseases such as staphylococcal and streptococcal infections, cat-

scratch fever, and tuberculosis (Chu, Mead, & Sjöstedt, 2010; Sjöstedt, 2010). 

B. EPIDEMIOLOGY 

1. Modes of Transmission 

As summarized in Table 2, the mode of transmission into humans is via a group 

of reservoirs,2 vectors3 and environmental mediums that have a very wide range of 

forms.  The primary reservoirs are small- to medium-size mammals, such as rabbits, and 

the primary documented vectors are ticks and biting flies (CIDRAP, 2010).  Other less 

common reservoirs includes a variety of vertebrate (some species of birds and fish) and 

invertebrate taxa (Dudley, 2010).  The period of communicability varies between vectors; 

flies can be infective for up to 14 days and ticks infective throughout their lifetime (Chu, 

Mead, & Sjöstedt, 2010; Sjöstedt, 2010). 

Modes of Transmission 

Bites by infected arthropods 

Direct contact with infected animals 

Handling of infectious animal tissue or fluids 

Ingestion of contaminated food, water or soil 

Inhalation of infectious aerosols, including dust from 
contaminated hay and aerosols generated by lawn mowing and 
brush cutting 

Exposure in the laboratory setting 

Possibly direct contact with contaminated soil or water 

Table 2.   Modes of Tularemia Transmission to Humans (CIDRAP, 2010) 
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2 A reservoir is an alternate or passive host or carrier that harbors pathogenic organisms or parasites 

without injury to itself, and serves as a source from which other individuals can be infected (Dorland’s 
Medical Dictionary, 2007).   

3 A vector is a carrier, especially an animal, such as an arthropod, that transfers an infective agent from 
one host to another (Dorland’s Medical Dictionary, 2007). 



2. Incidence 

The geographic distribution of tularemia has included the entire continental 

United States (Chu, Mead, & Sjöstedt, 2010; Sjöstedt, 2010).  The CDC’s Morbidity and 

Mortality Weekly Report (MMWR) reported an average of 124 cases (range 86–193) per 

year from 1990 to 2000, with the highest number of cases in counties throughout 

Arkansas and Missouri, eastern Oklahoma and Kansas, southern South Dakota and 

Montana, and Massachusetts (CDC, 2002).  Between 2000 and 2008, the average number 

of cases was 125 per year, with the highest incidence in Missouri, Arkansas, Oklahoma, 

and Massachusetts.  A particular area in Massachusetts is Martha’s Vineyard, where the 

majority of those cases occurred (Weinberg & Branda, 2010).  Figure 1 shows the 

geographical distribution of reported cases of Tularemia in the United States between 

2000 and 2008 (Dudley, 2010). 

 

Figure 1.   Locations of Reported Cases of Tularemia in the United States, 2000–2008  
(Dudley, 2010, p. 10) 
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C. CLINICAL SYNDROMES 

A clinical syndrome is the manifestation of a disease process in a patient 

pertaining to or founded on actual observation, treatment, and laboratory findings.  The 

tularemia disease manifests on a patient in various clinical forms depending in the 

virulence of the strain, dose, and inoculum (Dennis et al., 2001). 

1. Glandular and Ulceroglandular Tularemia 

Organisms enter the host through apparent breaks in the skin surface due to the 

bite of infective arthropods, direct contact with infectious materials, or the puncture of 

skin with a sharp object.  The infection dose for humans is 10 to 50 organisms.  From the 

site of inoculation, the organisms spread to the regional lymph nodes (CIDRAP, 2010).  

The onset is 3 to 6 (range 1 to 14) days after exposure showing symptoms of chills, fever, 

head and muscle pain, and prostration (Foley & Nieto, 2010). 

2. Pneumonic Tularemia 

Infection happens through the lungs either via inhalation or through dissemination 

in the bloodstream. The infectious dose is 10 to 50 organisms.  The organisms rapidly, 

entering the pulmonary area (within minutes) and begin replicating.  This explosive 

capacity to replicate appears to be an important factor in virulence associated with 

pulmonary infection (CIDAP, 2010).  Ulcers may be absent; patients may have a dry 

cough, shortness of breath, and chest pain, with patchy infiltrates (fluids), lobar 

pneumonia,4 or bloody pleural effusion.5  The fatality rate can be up to 40% without 

antibiotic treatment (Foley & Nieto, 2010). 

 
4 A form of pneumonia that affects the lobe of a lung. 

5 Excessive bloody fluids seeping in the chest cavity. 
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3. Oculoglandular Tularemia 

Organisms enter via ocular/conjunctiva, with unilateral conjunctival ulcers, 

purulent6 conjunctivitis, periorbital7 edema8 and enlargement of the cervical9 and 

preauricular10 lymph nodes11 (Foley & Nieto, 2010). 

4. Oropharyngeal and Gastrointestinal Tularemia 

Organisms enter via the mucous membrane of the oropharynx following ingestion 

of infected material (meat or water).  Lesions develop primarily in tonsillitis and 

pharyngitis12 and lymph node; throughout the gastrointestinal (GI) tract there may be a 

few lesions.  The usual symptoms are sore throat and or abdominal pain, with sporadic 

vomiting, diarrhea, and GI bleeding.  The fatality rate can be up to 60% (Foley & Nieto, 

2010). 

5. Typhodial Tularemia 

Typhoidal tularemia is secondary to pneumonic tularemia and occasionally occurs 

after ulceroglandular tularemia.  The characteristic symptoms of typhoidal tularemia are 

not observed and there is no visible site of inoculation (Foley & Nieto, 2010). 

D. TULAREMIA IN BIOLOGICAL WARFARE 

The use of F tularensis in warfare can be traced to 14th century BC, where the 

Hittites of Anatolia sent infected animals and people into western Anatolia in order to 

cause outbreaks inside enemy territory further spreading an already occurring tularemia 

epidemic that lasted 35 to 40 years (Trevisanato, 2007). 

 
6 Conjunctivitis containing pus. 

7 The periosteum of the bones forming the orbit, eye socket. 

8 Accumulation of excess fluids. 

9 Pertaining to the neck. 

10 In front of the aurice of the ear. 

11 Filter the lymphatic fluid.  Located in different regions of the body.  Main regions are the neck, 
underarms, upper chest, and the groin (MedicineNet, n.d.) 

12 Inflammation of the throat. 
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In the modern era, F tularensis has been weaponized by freeze drying a bacteria-

laden slurry and milling it into a fine powder for aerosol delivery (Cronquist, 2004).  The 

Japanese germ warfare research units studied the potential of F tularensis as a modern 

biological weapon while operating in Manchuria between 1932 and 1945 (Cronquist, 

2004).  The use of F tularensis as a biological weapon has been suggested to be the cause 

of a Tularemia outbreak affecting tens of thousand Soviet and German soldiers during the 

battle of Stalingrad in World War II; however, it is also thought to be the result of natural 

causes (Croddy, 2001).  After World War II, further research was conducted to 

understand the pathophysiology of tularemia and to develop vaccines and antibiotic 

prophylaxis and treatment regimens (Dennis et al., 2001). 

In the late 1960s, F tularensis was one of several biological weapons stockpiled 

for delivery as aerosols, and then, in 1969, President Nixon gave the declaration of 

biological disarmament.  The Biological and Toxin Weapons Convention of 1972 placed 

the possible use of biological weapons very low.  There are thoughts that the former 

Soviet Union continued with the research and development of biological weapons under 

an organization named Chief Directorate for Biological Preparations (mostly known as 

Biopreparat).  Biopreparat continued operation until the early 1990 with the production of 

F. tularensis strains engineered to be resistant to antibiotics and vaccines (Davis, 1999). 

By the late 1990s to early 2000s, the CDC studied the economic impact of a 

bioterrorist attack based on the model used by the World Health Organization to estimate 

the impact of an intentional aerosol dispersal of 50 kg of virulent F tularensis over a 

metropolitan area with 5 million inhabitants.  The economic impact is estimated at 

$5.4 billion for every 100,000 persons exposed.  The estimated number of persons 

exposed is 250,000 incapacitating casualties, including 19,000 deaths; the number could 

be greater if a genetically modify strain is used (Dennis et al., 2001). 

E. RECENT NATURAL OUTBREAKS 

Tularemia disease is currently a rare disease in the United States, with a peak 

number of 2,300 cases reported in 1939 prior to development of antibiotic therapy.  The 
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only two pneumonic tularemia outbreaks in the United States have occurred in Martha’s 

Vineyard, Massachusetts, in 1978 and 2000 (Hornick, 2001). 

The Martha’s Vineyard 2000 pneumonic tularemia outbreak resulted in 15 

patients, of which 11 cases where pneumonic tularemia.  The strain was identified to be F 

tularensis type A from samples of the only fatality.  The initial reports started with five 

cases in July 2000 and by late August, six additional cases were identified.  The modes of 

transmission were associated with lawn mowing and brush cutting (Feldman et al., 2001). 

In the fall of 2005 in Washington, District of Columbia, traces of F tularensis 

were detected on the Capitol Mall by air sensors under the federal BioWatch program.  

Fortunately, no cases of tularemia were reported among the people participating in an 

antiwar demonstration and a National Book Festival (CIDRAP, 2005). 

Worldwide, natural outbreaks have been reported from Scandinavia with an 

average of 3 to 4 cases per 100,000 people, Southern Europe, former Soviet Union, 

Japan, Canada and Mexico.  In Spain, an outbreak with 585 cases is associated with 

exposure to infected hares.  In Turkey and Bulgaria, large outbreaks were associated with 

direct exposure with contaminated drinking water.  In Sweden and Finland, an epidemic 

of respiratory tularemia occurred after mosquito bites as well as hay contaminated from 

infected rodents and the bacteria became airborne while handling and moving hay (Foley 

& Nieto, 2010).  In Kosovo, a large outbreak of 327 cases occurred after handling 

contaminated food and water from infected rodents (Reintjes et al., 2002). 
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III. CUMULATIVE SUM 

The Cumulative Sum (CUSUM) control chart (Page, 1954; Lorden, 1971) is a 

sequential hypothesis test for a change from a known, f0, nonoutbreak distribution to a 

known or estimated outbreak distribution, f1.  The method defines a threshold h and 

monitors the statistic Ct; it signals when the CUSUM statistic is greater or equal to the 

threshold, Ct > h. 

The CUSUM satisfies the recursion 

 1
1

0

( )
max 0, ln

( )
t

t t
t

f X
C C

f X


 

 


  (1) 

where, 

Ct    is the current value of the CUSUM on day t  

Ct-1   is the value of the CUSUM on day t-1  

f0     is the rare disease nonoutbreak distribution 

f1  is the rare disease outbreak distribution 

ln [f1(Xt) / f0(Xt)] is the log-likelihood ratio for Xt relating the nonoutbreak 
distribution and the outbreak distribution.  Xt is the observation for day t. 

 

The method usually starts at C0 = 0 and it stops and concludes that an outbreak 

may be occurring fat the first time when Ct > h.  The implementation of the CUSUM 

requires choosing a threshold h to achieve a desired level of performance.  Assuming that 

all observations are independent and identically distributed (iid) according to the 

nonoutbreak distribution, f0, the threshold h is chosen to make the average time between 

false signals (ATFS) sufficiently large.  The ideal threshold has a large time between 

false signals when there is no outbreak and a small delay to the first real signal when 

there is an outbreak. 
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A. NORMAL-BASED CUSUM 

When the nonoutbreak, f0, and outbreak, f1, distributions have normal densities 

with common variance σ2 and means μ0 and μ1 = μ0+δσ, respectively, then Equation 1 

reduces to 

 1 0
1max 0,

2t t tC C X
 



  
 


  (2) 

This normal-based CUSUM will detect only increases in the mean, so it is a one-

sided CUSUM. 

B. POISSON-BASED CUSUM 

When the nonoutbreak, f0, and outbreak, f1, distributions have Poisson mass 

functions with means λ0 and λ1, respectively, so that f0 = Pois( λ0 ) and f1 = Pois( λ1 ), 

then Equation 1 reduces to 

 
   

1 0
1

1 0

max 0,
ln lnt t tC C X

 
 

 
    

  (3) 

For the Poisson distribution the expected value equals the variance, E(Y) = 

Var(Y) = λ, so the Poisson-based CUSUM simultaneously monitors the mean and 

variance of the distribution. 

C. COMPARING NORMAL- AND POISSON-BASED CUSUMS 

No references were found in the literature to any studies comparing the 

performance of the normal- and Poisson-based CUSUM for the detection of rare diseases.  

Comparisons between Poisson-based CUSUM and other methods can be found in Han, 

Tsui, Ariyajunya, and Kim (2009); Rossi, Lampugnani, and Marchi (1999) compare the 

standardized Poisson CUSUM with functional transformation of the Poisson distribution 
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that produce a better normal approximation.  Hawkins and Olwell (1998) assess the 

sensitivity of the Poisson CUSUM to deviations from the Poisson distribution. 

When comparing Equations 2 and 3 it can be seen that normal- and Poisson –

based CUSUM will perform equally when 

1  0

2

1  0

2


1  0

ln 1  ln 0  

Therefore, the normal- and Poisson-based CUSUMs are exactly the same when 

the denominators in the above equation are equal, which is the same as when 


1


0

 e2  7.3891
 

Expressed in a more intuitive way, when the outbreak mean is approximately 7.40 

times the nonoutbreak mean (i.e., when 1 7.4 0   ) then the normal- and Poisson-based 

CUSUMs are exactly the same and thus, theoretically, will perform equally.  This, of 

course, begs the question of what happens when the outbreak mean is either larger or 

smaller than 7.40 times the nonoutbreak mean. 

1. Mean Relationship:  Nonoutbreak and Outbreak Distributions 

The mean-relationship between the nonoutbreak and outbreak distributions give 

us three particular cases to evaluate and compare the performance between normal- and 

Poisson-based CUSUM. 

a. Case #1:  λ1 = 7.40 λ0 

The outbreak mean is equal to 7.40 times the nonoutbreak mean.  This 

case is a theoretical result that provides a reference point from which extreme case 

situations could be discriminated.  It is worth noting that this is something of an extreme 

case in and of itself, in the sense that the mean occurrence for the outbreak is more than 
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seven times larger than the nonoutbreak mean, which is likely to be fairly obvious in and 

of itself.  That is, an outbreak of this magnitude may be fairly obvious and not require the 

use of a statistical algorithm for detection. 

b. Case #2:  λ1 << 7.40 λ0 

The outbreak mean is much less than 7.40 times the nonoutbreak mean.  

For example, when the outbreak mean is almost equal to the nonoutbreak mean.  This 

will be the case when the user desires to have an aggressive early detection policy, such 

as the biosurveillance system implementation in an urban area.  It is also the case when 

an outbreak will not be obvious to medical and public health practitioners and likely 

require the use of a sensitive statistical algorithm to aid in detection. 

c. Case #3:  λ1 >> 7.40 λ0 

The outbreak mean is much greater than 7.40 times the nonoutbreak mean.  

This case is probably unlikely, but it would occur only when the user desires to detect 

outbreaks that are substantially larger than the nonoutbreak incidence rate.  As with Case 

#1, this case is likely to be obvious and not require the use of a statistical algorithm for 

early event detection. 



IV. COMPARISON METHODOLOGY 

Bringing the material in Chapters I–III together, here we assess the performance 

of the normal- and Poisson-based CUSUMs for detecting Tularemia for Cases #1–#3 

established at the end of Chapter III.  The goal is to provide some perspective about how 

each algorithm performs relative to the other when trying to detect a rare disease and, in 

particular, to examine what the implications are of using a normal-based CUSUM when 

the data is Poisson distributed (as it is likely to be for rare diseases).  
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A. SCENARIO 

As previously described, F. tularensis is a Category A biological agent due to its 

virulence, infectiousness, and ease of dissemination.  As described in Chapter II, 

Tularemia occurs naturally, including in southern Monterey County.  Thus, though it is 

rare, an occasional diagnosed case of Tularemia in and of itself is not sufficient evidence 

of either a large (naturally occurring) outbreak or of a bioterrorist attack. 

1. Biological Agent 

Disease:  Tularemia 

Cause Agent:  Francisella tularensis type A 

Incubation Period: 3 to 5 days (range 1 to 14 days) 

Cases Occurrence: According to a Poisson(λ*) distribution, a discrete 

distribution.  The parameter λ* is the mean number of cases actually observed in some 

population, which will be assumed constant for the purposes of this analysis.  When λ*= 

λ0 then the observed mean is equal to the mean when there is no outbreak.  However, 

when 
*

0     then there is an increased incidence in Tularemia and *
1 1     

corresponds to an increase in the incidence that those who designed the CUSUM deemed 

important to detect quickly. 
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2. Biosurveillance Systems 

Two biosurveillance systems are considered in this study. 

a. System A 

Uses the normal-based CUSUM (Equation 2) and finds the threshold hA to 

achieve a desired ATFS assuming the disease occurrence distribution is approximately 

normal (e.g., for X ~ Poisson( λ ) the system operator (incorrectly) assumes X ~ N( λ , λ 

)). 

This type of system is what would likely be used for detecting rare 

diseases outbreaks, incorrectly using the normal-based CUSUM to monitor data from a 

Poisson distribution. 

b. System B 

Uses the Poisson-based CUSUM (Equation 3) and finds the threshold hB 

to a desired ATFS assuming the disease occurrence follows a Poisson distribution. 

This system models the occurrence of outbreak of a rare disease more 

appropriately than System A because it does not assume any theoretical approximations, 

making it a good choice for comparisons with other systems. 

B. METHODOLOGY 

The idea is to gain some insight into what happens when a normal-based CUSUM 

(e.g., Equation 2) is used for detecting an outbreak of a rare disease in which the 

nonoutbreak observations can be assumed to follow a Poisson distribution.  Under these 

conditions, the appropriate CUSUM to use would be Equation 3, but the CUSUM from 

Equation 2 is mistakenly applied. 

The comparison metric used is the ATFS.  This is the average time to false signal 

when there is no outbreak and it is also the average time to first signal when there is an 

outbreak.  Under the assumption that the data is independently and identically distributed, 

these statistics are equivalent to the in-control and out-of-control average run length 
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metrics in statistical process control (Fricker, 2010a; Fricker, 2010b).  When comparing 

the performance of the two methods, one first chooses thresholds so that both methods 

have equal average time to false signal, and then for various outbreak distributions, the 

method with the lower average time to first signal is considered better.  Specifically, once 

the thresholds to achieve the desired ATFS are determined for each case, the average 

time to first signal for the normal- and Poisson-based CUSUMs are assessed across a 

variety of outbreaks means λ* (λ* > λ0). 

The effectiveness of Biosurveillance Systems A and B for the detection of a 

tularemia outbreak were simulated using an open source statistical software developed at 

Bell Laboratories, called R, available from http://www.r-project.org/.  R was also used to 

determine the thresholds that achieved the desired ATFS and to simulate the Tularemia 

data used for comparison of the biosurveillance systems.  The names of the R functions 

used are denoted in bold and blue color and the code is given in Appendix A. 

The biosurveillance systems in use generally assume the data being surveilled is 

normally distributed and thus use normal-based CUSUM methods.  However, rare 

diseases data do not conform to that assumption.  Therefore, as Chpater V shows, the 

biosurveillance system will not behave as expected unless a different threshold is chosen.  

In order to compensate non-conformity of rare disease data to a normal-based CUSUM a 

process of calibration is used.  A point of calibration P will be defined as the point where, 

when the mean rate of ocurrance (λ*) is equal to nonoutbreak mean (λ0), the thresholds of 

the two systems are set so that the have equal ATFSes. 

The user of biosurveillance System A, which uses a normal-based CUSUM and 

who (incorrectly) assumes the data is normally distributed, sets a threshold (hA) for the 

normal-based CUSUM under these assumptions to achieve a desired ATFS.  The R code 

fNormNorm2 is used to find this threshold. 

The user of biosurveillance System B, the Poisson-based CUSUM and who 

(correctly) assumes the data is Poisson distributed, sets a threshold (hB) for the Poisson-

based CUSUM method to match the System A desired ATFS.  The R code fPoisPois2 is 

used to find this threshold. 

http://www.r-project.org/
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At this point, Referred as stage 1, Biosurveillance Systems A and B are thought to 

be ready to be implemented to provide an early detection of a Tularemia outbreak.  

However, the Tularemia disease incidence rate in the United States is less than 150 cases 

per year (Weinberg & Branda, 2010; CDC, 2002), which gives an indication that the data 

cannot be assumed to be normally distributed and therefore System A may not perform as 

expected. 

Stage 2 begins once Biosurveillance Systems A and B are implemented in the 

field to provide an early detection of a Tularemia outbreak resulting from either natural 

causes or bioterrorist attack.  Because Biosurveillance System A may not behave as 

expected, and this could be seen by comparing the achieved ATFS to the desired ATFS at 

the calibration point P, the user will likely have to adjust the threshold to achieve the 

desired ATFS performance. 

That is, the user of System A, noticing the difference between achieved ATFS and 

the desired ATFS, re-calibrates the system (i.e., changes the threshold); this is referred as 

Stage 3.  The threshold adjustment to achieve the desired ATFS is done using the 

fNormPois2 R code.  The new settings for the normal-based CUSUM method is called 

Biosurveillance System A’ with threshold hA’. 

The results are depicted in a series of two graphs for each mean relationship case, 

where the first graph for each shows Systems A and B being implemented in an 

environment with varying occurrence outbreak mean; the second graph, for each case, 

shows the improvement or lack of it of System A’ in comparison to Systems A and B. 

C. ESTIMATING LAMBDA 

For an implementation of the system the nonoutbreak (λ0) and outbreak means 

(λ1) need to be estimated.  The nonoutbreak mean λ0 can be estimated from historical data 

and the outbreak mean λ1 will be set depending on the level of biosurveillance 

aggressiveness desired according to the biosurveillance established policy. 

Studying the incidence rate within the United States, it can be seen that 125 

tularemia cases per year were recorded in the 2000–2008 period (Weinberg & Branda, 
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2010).  The biosurveillance system is thought to be operating in a daily cycle,which is the 

data fed into the CUSUM algorithm is on a daily basis, the value of lambda should be 

computed per day. 

One initial, simple and intuitive approach is to consider only the number of cases 

within the entire United States per year. Using the properties of the Poisson distribution, 

the number of cases reported per year are translated to a number of cases per day that can 

be considered the nonoutbreak mean λ0, and the outbreak mean will be estimated based 

on the aggressiveness of the surveillance policy.  In a situation where a system is being 

designed for a specific county or city, the population considered will be the local 

population being monitored and the local incidence rate. 

To find a rough and broad estimate for the nonoutbreak mean λ0, the number of 

yearly cases is divided by the number of days in a year (disregarding leap years) to get 

the mean of the number of cases per day.  Since the mean of the Poisson distribution is 

lambda, the procedure gives a simple estimation for the parameter used in the CUSUM 

algorithm.  In the Tularemia scenario, the nonoutbreak mean is 0.3425 and, therefore, the 

number of days with non zero cases in a year are very few.  This is the first indication 

that the data is better adjusted to a Poisson distribution than a normal distribution, and 

that transforming the data to approximate normality may not be appropriate for rare 

diseases surveillance. 
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V. RESULTS AND ANALYSIS 

Since the user sets the desired-ATFS based on desired system performance, since 

the incidence rate for nonoutbreak situations gives an estimate of λ0 and the 

biosurveillance system policy specifies λ1 and since the theory shows that the importance 

relies in the means relationship rather than the means values, in the simulations the means 

can be chosen arbitrarily. 

To keep the computations reasonable, both in terms of the simulation run time and 

the use of computer memory, the values of nonoutbreak means are fixed at 0.100 (λ0 = 

0.100).  The value of the outbreak mean λ1, will depend on the means relationship of the 

case in consideration.  The number of loops chosen to run the simulations was set so that 

the standard error for the target-ATFS is less than 0.100. 

Given that the Tularemia data is discrete, one cannot assume that resulting ATFS 

from the simulation will be continuous.  Preliminary runs were conducted to select the 

appropriate target ATFS as close to the desired-ATFS (maintain equal to 80.00) to allow 

comparisons between the three considered biosurveillance systems without unnecessary 

efforts.  Details of these preliminary runs are not given here; however, they can be 

provided upon request to the author.  A sample threshold search is shown in appendix C, 

where it can bee seen discontinuity in the ATFS suggesting that selection of an ATFS 

may not be arbitrary and more research is needed to understand completely the situation. 

From the simulation results, Appendix B, when comparing systems effectiveness 

at λ* = λ0, the calibration point P, the reference ATFS is the target-ATFS of System B 

that is a consequence from computing the threshold for a desired ATFS of that system at 

each case of the mean relationship.  However, for λ* > λ0, the reference ATFS should be 

the achieved-ATFS of System B at that occurrence outbreak mean (λ*) because that 

ATFS and the achieved-ATFS of the other systems, are computed using the same set of 

parameters.  See Table 3 for a simplified process explanation to assess the effectiveness 

between normal- and Poisson-based CUSUM. 

 



Stage ATFS Threshold 
Stage 1 Based on the aggressiveness of surveillance 

policy select desired-ATFS to find the 
appropriate threshold h that will give an ATFS, 
target-ATFS, close to the desired ATFS. 

desired-ATFS 
target-ATFSA, B 

hA, B 

Stage 2 For the first simulation run target-ATFSB is the 
reference ATFS at the calibration point P where 
λ* = λ0. 
 
Away from the calibration point P, that is for λ* 
> λ0 the reference is the achieved-ATFSB at λ* 
 

target-ATFSA,B , at point P 
achieved-ATFSA,B 

hA, B 

Stage 3 Adjustment of System A threshold hA.  System 
A’ is System A with adjusted threshold. 

target-ATFSA,B,A’ , at point P 
achieved-ATFSA,B,A’ 

hA, B, A’ 

Table 3.   Stage Process to Assess Effectiveness of Normal- and Poisson-Based CUSUM 

A. CASE #1 

In this case the mean relationship is λ1 = 7.40 λ0, where the theoretical behavior of 

the normal- and Poisson-based CUSUM coincide. 

1. Case #1:  Stage 1 

With outbreak mean of λ1 = 0.740, the resulting target-ATFS for each 

biosurveillance systems A and B are 78.90 and 78.75, respectively, with threshold values 

of 0.64 and 1.36, respectively.  The computational results are shown in Table 4. 

 

System A System B 
Target 
ATFS 

Standard 
Error 

Threshold 
hA 

Target 
ATFS 

Standard 
Error 

Threshold 
hB 

78.9001 0.0773 0.6378 78.7518 0.0777 1.3604 

Table 4.   Case #1: Stage 1.  Thresholds Implementation Parameters 

2. Case #1:  Stage 2 

Once the systems are fielded or deployed to provide an early detection of 

Tularemia, Figure 1 shows that only System B achieves an ATFS near to the target-

ATFSB at the calibration point P. 
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In particular, in Figure 2 notes that System B achieves an ATFS of 78.64 while 

System A achieves an ATFS of 10.51—well below that of System B and what is desired.  

In System A, the difference between target-ATFS of System B and the achieved-ATFS of 

System A at the calibration point P is 68.24.  Thus, System A will have a false positive 

signal rate on the average almost eight times what is desired.  

Now, Figure 2 also shows that System A will detect outbreaks more quickly than 

System B.  This follows because the ATFS for System A is much lower than for System 

B for all λ* > λ0.  However, this could simply be an artifact of the fact that the threshold 

for System A is set inappropriately low. 

3. Case #1:  Stage 3 

In this stage, the threshold hA’ is determined to be 1.08, achieving an ATFS of 

78.26 that is near to the target-ATFS of System B at the calibration point P.  Table 5 

shows the parameters of the three biosurveillance systems in consideration; in Figure 3, it 

is clear that System A’ and System B perform almost exactly the same. 

In fact, this result should not be surprising since the CUSUMs from Equations 2 

and 3 are exactly the same under these conditions.  However, it is important to note that 

System A will give an excessive number of false positive signals if there is an assumption 

the data were normally distributed and the threshold is set incorrectly. 

 

System A System B System A’ 
Target 
ATFS 

Standard 
Error 

Threshold 
hA 

Target 
ATFS 

Standard 
Error 

Threshold 
hB 

Target 
ATFS 

Standard 
Error 

Threshold 
hA’ 

78.9001 0.0773 0.6378 78.7518 0.0777 1.3604 78.2039 0.0769 1.0805 

Table 5.   Case #1: Stage 3.  Thresholds Implementation Parameters 



 

Figure 2.   Case #1 Stage 2 

 

Figure 3.   Case #1 Stage 3 
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B. CASE #2 

In this case, the mean relationship is λ1 << 7.40 λ0, where an aggressive early 

detection policy is desired for the biosurveillance system.  This case could be applicable 

when there is knowledge of a probable bioterrorist attack (intentional release of 

biological agent) or in other situations where the user wants a system sensitive to 

detecting a Tularemia outbreak. 

1. Case #2:  Stage 1 

With outbreak mean of λ1 = 0.105, very close to λ0, the resulting target-ATFS for 

each biosurveillance systems A and B are 81.58 and 81.08 respectively with threshold 

values of 8.11 and 2.39, respectively.  The computational results from finding the 

thresholds to be used are shown in Table 6. 

 

System A System B 
Target 
ATFS 

Standard 
Error 

Threshold 
hA 

Target 
ATFS 

Standard 
Error 

Threshold 
hB 

81.5763 0.0877 8.1100 81.0823 0.0730 2.3851 

Table 6.   Case #2: Stage 1.  Threshold Implementation Parameters 

2. Case #2:  Stage 2 

Once the systems are fielded or deployed to provide an early detection of 

tularemia, Figure 3 shows that the System A achieved-ATFS is greater than the target-

ATFS of System B at the calibration point P.  This result is the opposite of that obtained 

in Case #1, where System A was signaling below the target-ATFSB. 

System B signals at the achieved-ATFS of 81.45, while System A signals at an 

achieved-ATFS of 90.19.  In System A, the difference between the target-ATFSB of 

System B and achieved-ATFS of System A at the calibration point P is 9.11.  This 

difference of 9.11 represents about a 10% increase in the time between false positive 

signals.  Furthermore, as shown in Figure 4, System A has a larger ATFS than System B 

for all λ* > λ0.  Thus, in this configuration, System A will be slower than System B at 
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detecting an outbreak.  For Tularemia with an incubation time of 3 to 5 days, such delays 

in detection would increase the time for post-exposure prophylaxis that will result in a 

greater number of persons without having the correct antibiotic therapy.  This delay will 

more likely increase the number of fatalities within the exposed population and the level 

of resources used to avoid further casualties.  However, this delay could simply be an 

artifact of the fact that the threshold for System A is set incorrectly. 

3. Case #2:  Stage 3 

In this stage, the threshold hA’ is determined to be 7.73, achieving an ATFS of 

81.68 that is near to the target-ATFSB of System B.  Table 7 shows the parameters of the 

three considered biosurveillance systems. 

 

System A System B System A’ 
Target 
ATFS 

Standard 
Error 

Threshold 
hA 

Target 
ATFS 

Standard 
Error 

Threshold 
hB 

Target 
ATFS 

Standard 
Error 

Threshold 
hA’ 

81.5763 0.0877 8.1100 81.0823 0.0730 2.3851 81.6840 0.0967 7.7319 

Table 7.   Case #2: Stage 3.  Thresholds Implementation Parameters 

As shown in Figure 5, System A’, the normal-based CUSUM with threshold hA’ 

of 7.73, achieves an ATFS of 81.73; now System A’ is thought to be calibrated at point 

P.  However, with an increase of the occurrence outbreak mean, System A’ continues to 

show a greater ATFS values than System B for all λ* > λ0.  The result is that, even after 

correcting the biosurveillance system, as in System A’, the CUSUM incorrectly assuming 

the data is normally distributed is significantly slower to detect a Tularemia outbreak by 

something on the order of 5 to15 days’ delay in detection. 



 

Figure 4.   Case #2 Stage 2 

 

Figure 5.   Case #2 Stage 3 
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C. CASE #3 

In this case, the mean relationship is λ1 >> 7.40 λ0, where a less-aggressive early 

detection policy is desired for the biosurveillance system.  This case may be applicable, 

for example, for a biosurveillance system implementation in a rural area, where there is 

knowledge of natural occurrence cases.  This happens in those states where tularemia 

naturally occurs, such as Missouri, Arkansas, Oklahoma, and Massachusetts.  A 

particular area in Massachusetts is Martha’s Vineyard, where the majority of the cases in 

the United States have occurred (Weinberg & Branda, 2010). 

1. Case #3:  Stage 1 

With outbreak mean of λ1 = 1.480 (twice the mean relationship of Case #1), the 

resulting target-ATFS for each of Biosurveillance Systems A and B are 82.62 and 82.08 

respectively with threshold values of 0.12 and 0.49, respectively. The computational 

results for determining the thresholds are shown in Table 8. 

 

System A System B 
Target 
ATFS 

Standard 
Error 

Threshold 
hA 

Target 
ATFS 

Standard 
Error 

Threshold 
hB 

82.6174 0.0822 0.1238 82.0748 0.0809 0.4879 

Table 8.   Case #3: Stage 1.  Thresholds Implementation Parameters 

2. Case #3:  Stage 2 

Once the systems are fielded or deployed to provide an early detection of 

tularemia, Figure 5 shows that only System B achieves the target-ATFSB at the 

calibration point P. 

That is, as shown in Figure 6, System B achieves an ATFS of 81.17, while 

System A achieves an ATFS of 10.71.  In System A, the difference between target-

ATFSB of System B and achieved-ATFSA of System A at the calibration point P is 71.37  

This result is similar to that seen in Case #1. 



 33

For a disease like Tularemia that occurs naturally in the rural areas of the 

Midwestern of United States and Martha’s Vineyard in Massachusetts, the 

biosurveillance policy might be to set a high outbreak mean to account for those naturally 

occurring cases.  However, if System A starts to behave as shown in Figure 6, the user 

will lose trust in the effectiveness of the biosurveillance system and, perhaps, begin to 

ignore the system’s signals. 

3. Case #3:  Stage 3 

In this stage, the threshold hA’ is determined to be 0.31 achieving an ATFS of 

81.48, which is very close to the target-ATFSB.  Table 9 shows the parameters of the 

three biosurveillance systems in consideration, where it is clear that System A’ and 

System B perform almost exactly the same. See Figure 7. 

 

System A System B System A’ 
Target 
ATFS 

Standard 
Error 

Threshold 
hA 

Target 
ATFS 

Standard 
Error 

Threshold 
hB 

Target 
ATFS 

Standard 
Error 

Threshold 
hA’ 

82.6174 0.0822 0.1238 82.0748 0.0809 0.4879 82.2159 0.0812 0.3124 

Table 9.   Case #3: Stage 3.  Thresholds Implementation Parameters 



 

Figure 6.   Case #3 Stage 2 

 

Figure 7.   Case #3 Stage 3 
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VI. CONCLUSIONS 

A. CONCLUSION #1 

When the rate of disease, λ0, is very low and the occurrence counts are Poisson 

distributed, X ~ Pois(λ0), and the outbreak mean, λ1, manifests as only a small increase in 

the rate of disease, λ1 << 7.40 λ0., then the normal-based CUSUM can be significantly 

slower to signal an outbreak (on average) compared to the equivalent Poisson-based 

CUSUM. 

Thus, the incorrect use of normal-based CUSUM can result in unacceptable delay 

in detection.  To monitor a rare disease, such as Tularemia, a Poisson-based CUSUM 

should be included in biosurveillance systems.  The examples herein show potential 

delays in signaling on the order of weeks when normal-based CUSUMs are used to 

monitor Poisson data. 

B. CONCLUSION #2 

When, the rate of disease, λ0, is very low, the occurrence counts are Poisson 

distributed, X ~ Pois(λ0), and the outbreak, λ1, is significantly larger than rate of disease, 

λ1 ≥ 7.40 λ0, then, the normal-based CUSUM performs as well as the Poisson-based 

CUSUM if the threshold h, is set appropriately to achieve equivalent ATFS performance 

at λ* = λ0.  However, if the threshold h is set incorrectly then normal-based CUSUM has 

an excessively high false signal rate.  This echoes a real problem with existing 

biosurveillance systems. 

C. CONCLUSION #3 

This work provides an objective methodology to determine the thresholds for a 

normal- and Poisson-based CUSUM being used for a biosurveillance system intended to 

detect emerging infectious disease and any disease caused by a Category A biological 

agents.   
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D. FUTURE RESEARCH OPPORTUNITIES 

More research should be devoted to the study of discontinuity in the average time 

to signal (ATFS) for varying threshold (h) when applying normal- and Poisson-based 

CUSUM with Poisson distributed data, as it was observed during the search for an 

appropriate threshold, suggesting that the selection of the ATFS may not be arbitrary.  

See Appendix C for an example of discontinuities observed in the threshold search run 

results. 
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APPENDIX A.  R CODE 

A. AVERAGE TIME TO SIGNAL  - CUSUM METHOD 

# function nomenclature 
# f to denote function; distribution-based CUSUM; distribution data 
(observations) 
# ComplexLevel: {1:vector, 2:matrix} 
# fPoisPois1  Poisson-based CUSUM with Poisson observations 
# fNormNorm1  normal-based CUSUM with normal observations 
# fNormPois1  normal-based CUSUM with Poisson observations 
# fPoisPois2  Find threshold for a desire.ATFS 
# fNormNorm2  Find threshold for a desire.ATFS 
# fNormPois2  Find threshold for a desire.ATFS 
# fIn.Field  Simulation for Systems A, B and A' for varying occurrence 
outbreak mean (lambda.star) with plot 
 
# Poisson-based CUSUM with Poisson observations 
# Parameters: 
# h   Threshold 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# lambda.star  occurrence outbreak mean (in-field) 
# Return:  ATFS and standard error in a data frame structure 
 
fPoisPois1 <- function(h, nr.loops, lambda0, lambda1, lambda.star=lambda0) { 

delay <- rep(0, nr.loops); 
k <- (lambda1 - lambda0)/(log(lambda1) - log(lambda0)) 
 
for(i in 1:nr.loops) { 

Ct <- 0; 
counter <- 0; 
 
while(Ct < h) { 

obs <- rpois(1,lambda.star) 
Ct <- max(0, Ct + obs - k) 
counter <- counter + 1 
} 

 
delay[i] <- counter 
} 

 
atfs.PoisPois <- mean(delay) 
se.PoisPois <- sd(delay)/sqrt(nr.loops) 
 
antwort.data <- data.frame(atfs.PoisPois, se.PoisPois) 
return(antwort.data) 
} 

 
# normal-based CUSUM with normal observations 
# Parameters: 
# h    Threshold 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# lambda.star  occurrence outbreak mean (in-field) 
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# Return:  ATFS and standard error in a data frame structure 
 
fNormNorm1 <- function(h, nr.loops, lambda0, lambda1, lambda.star=lambda0) { 

delay <- rep(0, nr.loops); 
k <- (lambda1-lambda0)/2 
 
for(i in 1:nr.loops) { 

Ct <- 0; 
counter <- 0; 
 
while(Ct < h) { 

obs <- rnorm(1, lambda.star, sqrt(lambda.star)) 
Ct <- max(0, Ct + obs - k) 
counter <- counter + 1 
} 

 
delay[i] <- counter 
} 

 
atfs.NormNorm <- mean(delay) 
se.NormNorm <- sd(delay)/sqrt(nr.loops) 
 
antwort.data <- data.frame(atfs.NormNorm, se.NormNorm) 
return(antwort.data) 
} 

 
# normal-based CUSUM with Poisson observations 
# Parameters: 
# h    Threshold 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# lambda.star  occurrence outbreak mean (in-field) 
# Return:  ATFS and standard error in a data frame structure 
 
fNormPois1 <- function(h, nr.loops, lambda0, lambda1, lambda.star=lambda0) { 

delay <- rep(0, nr.loops); 
k <- (lambda1-lambda0)/2 
 
for(i in 1:nr.loops) { 

Ct <- 0; 
counter <- 0; 
 
while(Ct < h) { 

obs <- rpois(1, lambda.star) 
Ct <- max(0, Ct + obs - k) 
counter <- counter + 1 
} 

 
delay[i] <- counter 
} 

 
atfs.NormPois <- mean(delay) 
se.NormPois <- sd(delay)/sqrt(nr.loops) 
 
antwort.data <- data.frame(atfs.NormPois, se.NormPois) 
return(antwort.data) 
} 

 



 39

B. THRESHOLD SEARCH 

# Find threshold for a desire.ATFS 
# Parameters: 
# lb.h   lower bound Threshold 
# ub.h   upper bound Threshold 
# step.h  step size for Threshold search 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# lambda.star  occurrence outbreak mean (in-field) 
# desire.atfs  desire ATFS 
# epsilon  exit criteria  
# Return:  Threshold, target ATFS, target standard error in a matrix 
structure 
# Function Calls 
#   fPoisPois1 
#   fPoisPois2 
 
fPoisPois2 <- function(lb.h, ub.h, step.h=0.1, nr.loops=100, lambda0, lambda1, 
lambda.star=lambda0, desire.atfs=80, epsilon=0.01) { 

delay <- rep(0, nr.loops); 
threshold <- seq(lb.h, ub.h, step.h) 
antwort.matrix <- matrix(nrow = length(threshold), ncol = 3) 
 
index <- 1 
old.h <- 0 
new.h <- lb.h 
for(i in threshold) { 

old.h <- new.h 
new.h <- i 
 
antwort.data <- fPoisPois1(i, nr.loops, lambda0, lambda1, lambda.star) 
 
antwort.matrix[index,1] <- i 
antwort.matrix[index,2] <- antwort.data[1,1] 
antwort.matrix[index,3] <- antwort.data[1,2] 
 
print(antwort.matrix[index,]) 
 
if(antwort.data[1,1] > desire.atfs) {  

dimnames(antwort.matrix) <- list(threshold , c("h.PoisPois", 
"atfs.PoisPois", "se.PoisPois")); print(antwort.matrix) 
 
if(step.h > 0.0001) { 

step.h <- step.h/10 
} 

 
nr.loops <- nr.loops*10 
subtitle <- c(step.h, nr.loops) 
print("step.h nr.loops"); print(subtitle) 
 
fPoisPois2(old.h, new.h + step.h, step.h, nr.loops, lambda0, lambda1, 
lambda.star, desire.atfs) 
} 

 
index <- index + 1 
} 

 
if(abs(antwort.data[1,1] - desire.atfs) > epsilon) { 
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dimnames(antwort.matrix) <- list(threshold , c("h.PoisPois", 
"atfs.PoisPois", "se.PoisPois")); print(antwort.matrix) 
 
fPoisPois2(old.h - step.h, new.h + 10*step.h, step.h, nr.loops, lambda0, 
lambda1, lambda.star, desire.atfs) 
} 

 
dimnames(antwort.matrix) <- list(threshold , c("h.PoisPois", 
"atfs.PoisPois", "se.PoisPois")) 
 
return(antwort.matrix) 
} 

 
# Find threshold for a desire.ATFS 
# Parameters: 
# lb.h   lower bound Threshold 
# ub.h   upper bound Threshold 
# step.h  step size for Threshold search 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# lambda.star  occurrence outbreak mean (in-field) 
# desire.atfs  desire ATFS 
# epsilon  exit criteria  
# Return:  Threshold, target ATFS, target standard error in a matrix 
structure 
# Function Calls 
#   fNormNorm1 
#   fNormNorm2 
 
fNormNorm2 <- function(lb.h, ub.h, step.h=0.1, nr.loops=100, lambda0, lambda1, 
lambda.star=lambda0, desire.atfs=80, epsilon=0.01) { 

delay <- rep(0, nr.loops); 
threshold <- seq(lb.h, ub.h, step.h) 
antwort.matrix <- matrix(nrow = length(threshold), ncol = 3) 
 
index <- 1 
old.h <- 0 
new.h <- lb.h 
for(i in threshold) { 

old.h <- new.h 
new.h <- i 
antwort.data <- fNormNorm1(i, nr.loops, lambda0, lambda1, lambda.star) 
 
antwort.matrix[index,1] <- i 
antwort.matrix[index,2] <- antwort.data[1,1] 
antwort.matrix[index,3] <- antwort.data[1,2] 
 
print(antwort.matrix[index,]) 
 
if(antwort.data[1,1] > desire.atfs) {  

dimnames(antwort.matrix) <- list(threshold, c("h.NormNorm", 
"atfs.NormNorm", "se.NormNorm")); print(antwort.matrix) 
 
if(step.h > 0.0001) { 

step.h <- step.h/10 
} 

 
nr.loops <- nr.loops*10 
subtitle <- c(step.h, nr.loops) 
print("step.h nr.loops"); print(subtitle) 
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fNormNorm2(old.h, new.h + step.h, step.h, nr.loops, lambda0, lambda1, 
lambda.star, desire.atfs) 
} 

 
index <- index + 1 
} 

 
if(abs(antwort.data[1,1] - desire.atfs) > epsilon) { 

dimnames(antwort.matrix) <- list(threshold, c("h.NormNorm", 
"atfs.NormNorm", "se.NormNorm")); print(antwort.matrix) 
 
fNormNorm2(old.h - step.h, new.h + 10*step.h, step.h, nr.loops, lambda0, 
lambda1, lambda.star, target.atfs) 
} 

 
dimnames(antwort.matrix) <- list(threshold, c("h.NormNorm", "atfs.NormNorm", 
"se.NormNorm")) 
 
return(antwort.matrix) 
} 

 
 
# Find threshold for a desire.ATFS 
# Parameters: 
# lb.h   lower bound Threshold 
# ub.h   upper bound Threshold 
# step.h  step size for Threshold search 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# lambda.star  occurrence outbreak mean (in-field) 
# desire.atfs  desire ATFS 
# epsilon  exit criteria  
# Return:  Threshold, target ATFS, target standard error in a matrix 
structure 
# Function Calls 
#    fNormPois1 
#    fNormPois2 
 
fNormPois2 <- function(lb.h, ub.h, step.h=0.1, nr.loops=100, lambda0, lambda1, 
lambda.star=lambda0, desire.atfs=60, epsilon=0.01) { 

delay <- rep(0, nr.loops); 
threshold <- seq(lb.h, ub.h, step.h) 
antwort.matrix <- matrix(nrow = length(threshold), ncol = 3) 
 
index <- 1 
old.h <- 0 
new.h <- lb.h 
for(i in threshold) { 

old.h <- new.h 
new.h <- i 
antwort.data <- fNormPois1(i, nr.loops, lambda0, lambda1, lambda.star) 
 
antwort.matrix[index,1] <- i 
antwort.matrix[index,2] <- antwort.data[1,1] 
antwort.matrix[index,3] <- antwort.data[1,2] 
 
print(antwort.matrix[index,]) 
 
if(antwort.data[1,1] > desire.atfs) {  

dimnames(antwort.matrix) <- list(threshold , c("h.NormPois", 
"atfs.NormPois", "se.NormPois")); print(antwort.matrix) 
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if(step.h > 0.0001) { 

step.h <- step.h/10 
} 

 
nr.loops <- nr.loops*10 
subtitle <- c(step.h, nr.loops) 
print("step.h nr.loops"); print(subtitle) 
 
fNormPois2(old.h - step.h, new.h + step.h, step.h, nr.loops, lambda0, 
lambda1, lambda.star, desire.atfs) 
} 

 
index <- index + 1 
} 

 
if(abs(antwort.data[1,1] - desire.atfs) > epsilon) { 

dimnames(antwort.matrix) <- list(threshold , c("h.NormPois", 
"atfs.NormPois", "se.NormPois")); print(antwort.matrix) 
 
fNormPois2(old.h, new.h + 10*step.h, step.h, nr.loops, lambda0, lambda1, 
lambda.star, desire.atfs) 
} 

 
dimnames(antwort.matrix) <- list(threshold , c("h.NormPois", 
"atfs.NormPois", "se.NormPois")) 
 
return(antwort.matrix) 
} 

 

C. SIMULATION VARYING OCCURRENCE OUTBREAK MEAN 

# Simulation for Systems A, B and A' for varying occurrence outbreak mean 
(lambda.star) with plot 
# Parameters: 
# h1   Threshold System A 
# h2   Threshold System B 
# h3   Threshold System A' 
# nr.loops  number of loops 
# lambda0  nonoutbreak mean 
# lambda1  outbreak mean 
# star.max  maximum occurrence outbreak mean lambda.star 
# Return:  ATFS for each system and difference system B - other system 
in a matrix structure 
# Function Calls 
#   fPoisPois2 
#   fNormNorm2 
#   fNormPois2 
 
fIn.Field <- function(h1, h2, h3, nr.loops, lambda0, lambda1, star.max=3.0) { 

lambda.star <- seq(0.1, star.max, 0.1) 
atfs.h1 <- rep(0,length(lambda.star)) 
atfs.h2 <- rep(0,length(lambda.star)) 
atfs.h3 <- rep(0,length(lambda.star)) 
 
for(i in 1:length(lambda.star)) { 

# System A 
antwort.h1 <- fNormPois1(h1, nr.loops, lambda0, lambda1, lambda.star[i]) 
atfs.h1[i] <- antwort.h1[1,1] 
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# System B 
antwort.h2 <- fPoisPois1(h2, nr.loops, lambda0, lambda1, lambda.star[i]) 
atfs.h2[i] <- antwort.h2[1,1] 
 
# System A' 
antwort.h3 <- fNormPois1(h3, nr.loops, lambda0, lambda1, lambda.star[i]) 
atfs.h3[i] <- antwort.h3[1,1] 
} 

 
plot(lambda.star, atfs.h2, type = "l", lty = 4, col = 4, xlab = 
"lambda^star", ylab = "Avg Time to Signal", ylim = c(0,100)) 
 
lines(lambda.star, atfs.h1, lty = 1, col = 2) 
lines(lambda.star, atfs.h3, lty = 1, col = 3) 
 
points(lambda.star, atfs.h2, pch = 1) 
points(lambda.star, atfs.h1, pch = 4) 
points(lambda.star, atfs.h3, pch = 5) 
 
diff.atfs.h2h1 <- atfs.h2-atfs.h1 
diff.atfs.h2h3 <- atfs.h2-atfs.h3 
 
antwort.data <- data.frame(atfs.h1, atfs.h2, atfs.h3, diff.atfs.h2h1, 
diff.atfs.h2h3) 
 
return(antwort.data) 
} 
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APPENDIX B.  SIMULATION TABLE RESULTS 

A. CASE #1 

achieved-ATFS achieved-ATFSB - achieved-ATFSA,A’ target-ATFSB Sys B:  78.7518 

target-ATFSB – achieved-ATFSA,A’ 

Occurrence 
Outbreak 
Mean (λ*) 

System 
A 

System 
B  

System 
A' 

System A System A' 
System A System A' 

0.10 10.5088 78.6372 78.2559 68.1284 0.3813 68.2430 0.4959

0.20 5.5022 23.3129 23.1702 17.8107 0.1427     

0.30 3.8064 12.1435 12.2490 8.3371 -0.1055     

0.40 3.0441 8.1768 8.1379 5.1327 0.0389     

0.50 2.5424 5.9954 5.9770 3.4530 0.0184     

0.60 2.1923 4.8213 4.8075 2.6290 0.0138     

0.70 1.9808 3.9615 3.9192 1.9807 0.0423     

0.80 1.8281 3.4237 3.4525 1.5956 -0.0288     

0.90 1.6836 3.0184 2.9805 1.3348 0.0379     

1.00 1.5865 2.7210 2.7317 1.1345 -0.0107     
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B. CASE #2 

achieved-ATFS achieved-ATFSB - achieved-ATFSA,A’ target-ATFS Sys B:  81.0823 

target-ATFSB – achieved-ATFSA,A’ 
Occurrence 
Outbreak 
Mean (λ*) 

System 
A 

System 
B  

System 
A' 

System A System A' 
System A System A' 

0.10 90.1933 81.4491 81.7306 -8.74 -0.28 -9.11 -0.65

0.20 45.6744 22.6916 40.6759 -22.98 -17.98     

0.30 30.4880 12.8553 27.3096 -17.63 -14.45     

0.40 22.9179 8.8971 20.4274 -14.02 -11.53     

0.50 18.4341 6.9965 16.3710 -11.44 -9.37     

0.60 15.5456 5.7662 13.8204 -9.78 -8.05     

0.70 13.3474 4.9518 11.9883 -8.40 -7.04     

0.80 11.7519 4.3496 10.5585 -7.40 -6.21     

0.90 10.5558 3.8651 9.4035 -6.69 -5.54     

1.00 9.4429 3.5048 8.4776 -5.94 -4.97     
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C. CASE #3 

achieved-ATFS achieved-ATFSB - achieved-ATFSA,A’ target-ATFS Sys B:  82.0748 

target-ATFSB – achieved-ATFSA,A’ 
Occurrence 
Outbreak 
Mean (λ*) 

System 
A 

System 
B 

System 
A' 

System A System A' 
System A System A' 

0.10 10.7054 81.1671 81.4763 70.46 -0.31 71.37 0.60

0.20 5.5690 24.7847 24.4483 19.22 0.34     

0.30 3.8087 13.0049 12.9909 9.20 0.01     

0.40 3.0462 8.4658 8.6337 5.42 -0.17     

0.50 2.5315 6.2885 6.1618 3.76 0.13     

0.60 2.2192 4.9118 4.8847 2.69 0.03     

0.70 1.9817 4.0602 4.0452 2.08 0.02     

0.80 1.8255 3.4414 3.4975 1.62 -0.06     

0.90 1.6860 3.0802 3.0972 1.39 -0.02     

1.00 1.5913 2.7360 2.7438 1.14 -0.01     
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APPENDIX C.  THRESHOLD SEARCH EXAMPLE 

Threshold search for normal-based CUSUM and data Poisson distributed 
> fNormPois12(0.00001, 10, 0.1, 100, 0.1, 0.105, desired.atfs=80) 
        h.NormPois atfs.NormPois se.NormPois 
1e-05      0.00001         10.90   0.9909184 
0.10001    0.10001         10.44   0.9708187 
0.20001    0.20001          9.50   0.7533762 
0.30001    0.30001         10.43   1.0186399 
0.40001    0.40001          9.55   1.0321474 
0.50001    0.50001          9.22   0.8001995 
0.60001    0.60001          9.36   0.8617014 
0.70001    0.70001         11.27   1.1155336 
0.80001    0.80001          9.06   0.7905784 
0.90001    0.90001         11.91   1.0422484 
1.00001    1.00001         20.86   1.4099230    Discontinuity in ATFS 
1.10001    1.10001         22.25   1.4797881 
1.20001    1.20001         19.29   1.3295625 
1.30001    1.30001         22.06   1.6701068 
1.40001    1.40001         20.66   1.3877691 
1.50001    1.50001         22.00   1.3193203 
1.60001    1.60001         19.41   1.1540963 
1.70001    1.70001         24.05   1.6870496 
1.80001    1.80001         21.63   1.4109711 
1.90001    1.90001         21.78   1.5225961 
2.00001    2.00001         33.76   2.2924170    Discontinuity in ATFS 
2.10001    2.10001         32.94   1.9074982 
2.20001    2.20001         31.08   1.6842515 
2.30001    2.30001         29.15   1.6531803 
break to save space 
6.30001    6.30001         71.27   3.2782064 
6.40001    6.40001         70.86   2.5110270 
6.50001    6.50001         73.37   2.4476191 
6.60001    6.60001         69.88   2.5345005 
6.70001    6.70001         70.29   2.8745591 
6.80001    6.80001         68.14   2.5391488 
6.90001    6.90001         79.08   2.6374031 
7.00001    7.00001         82.50   2.8247285 
 
[1] "step.h nr.loops" 
[1] 1e-02 1e+03 
        h.NormPois atfs.NormPois se.NormPois 
6.89001    6.89001        78.842   0.9835133 
6.90001    6.90001        78.587   0.9752885 
6.91001    6.91001        78.702   0.9493621 
6.92001    6.92001        79.278   0.9062284 
6.93001    6.93001        80.901   0.9346886 
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APPENDIX D.  GLOSSARY 

These are medical terms from Dorland’s Medical Dictionary 

 

Cervical:  Pertaining to the neck.  Pertaining to the neck or cervix of any organ or 
structure. 

Cervix:  Latin word meaning neck.  In anatomy, it is used for the neck and for any of a 
number of neck-like structures in the body. 

Clinical:  Pertaining to a clinic or to the bedside. Pertaining to or founded on actual 
observation and treatment of patients, as distinguished from theoretical or 
experimental. 

Communicable Disease:  A disease whose causative agents may pass or be carried from 
one person to another directly or indirectly. Modes of transmission include (1) 
direct contact with body excreta or discharges from an ulcer, open sore, or 
respiratory tract; (2) indirect contact with inanimate objects such as drinking 
glasses, toys, or bedclothing; and (3) vectors such as flies, mosquitoes, or other 
insects capable of spreading the disease.  Called also Contagious Disease. 

Conjunctiva:  The delicate membrane lining the eyelids and covering the eyeball (ocular 
conjunctiva). 

Dyspnea:  Breathlessness or shortness of breath; labored or difficult breathing.  It is a 
sign of a variety of disorders and is primarily an indication of inadequate 
ventilation or of insufficient amounts of oxygen in the circulating blood. 

Edema:  The accumulation of excess fluid in a body compartment; it may be in the cells 
(cellular edema), in the intercellular spaces within tissues (interstitial edema), or 
in potential spaces within the body.  Edema may also be classified by location, 
such as pulmonary edema, cerebral edema.  Edema can be caused by a variety of 
factors, such as an excess of hypotonic fluid (allowing movement of water into 
intracellular spaces), or decreased levels of plasma proteins (allowing passage of 
fluid out of the blood vessels into the tissue spaces).  Other factors include poor 
lymphatic drainage; conditions that increase capillary pressure, such as excessive 
salt or fluid content of the blood, or heart failure; and conditions that increase 
capillary permeability, such as inflammation. 

Emerging Infectious Disease:  Is one that is endemic in a given population but that has 
begun increasing in frequency or developing resistance to drug therapy or other 
treatments.  Infections that have newly appeared in a population or have existed 
but are rapidly increasing in incidence or geographic range 
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Endemic:  Present or usually prevalent in a population or geographical area at all times, 
in contrast to Epidemic; said of a disease or infectious agent. 

Epidemic:  Occurring suddenly in numbers clearly in excess of normal expectancy, in 
contrast to Endemic or sporadic. The term is used especially of infectious disease 
but is also applied to any disease, injury, or other health related event occurring in 
such outbreaks. 

Epiglottis:  The lid-like cartilaginous structure overhanging the entrance to the larynx; 
the muscular action of swallowing closes the opening to the trachea by placing the 
larynx against the epiglottis, so that food and drink are prevented from entering 
the larynx and trachea and directed instead into the esophagus. 

Etiology: Is the study or theory of the factors that cause disease and how disease is 
introduced to the host. 

Hematogenous:  Produced by or derived from the blood; disseminated through the 
bloodstream or by the circulation. 

Hypotonic:  Having abnormally reduced tonicity or tension.  Having an osmotic pressure 
lower than that of the solution with which it is compared. 

Infectious:  Caused by or capable of being communicated by infection. 

Infectious Disease:  One due to organisms ranging in size from viruses to parasitic 
worms; it may be contagious in origin, result from nosocomial organisms, or be 
due to endogenous microflora from the nose and throat, skin, or bowel. 

Larynx:  The muscular and cartilaginous structure, lined with mucous membrane, 
situated at the top of the trachea and below the root of the tongue and the hyoid 
bone; it contains the vocal cords and is the source of the sound heard in speech. 
The larynx is part of the respiratory system; air passes through it traveling from 
the pharynx to the trachea on its way to the lungs and again returning to the 
exterior. 

Lymph:  Transparent, usually slightly yellow, often opalescent liquid found within the 
lymphatic vessels, collected from tissues in all parts of the body and returned to 
the blood via the lymphatic system.  It is about 95 per cent water; the remainder 
consists of plasma proteins and other chemical substances contained in the blood 
plasma, but in slightly smaller percentage than in plasma.  Its cellular component 
consists chiefly of lymphocytes. 
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Lymph node:  Any of the accumulations of lymphoid tissue organized as definite 
lymphoid organs along the course of lymphatic vessels; they consist of an outer 
cortical and an inner medullary part.  Lymph nodes are the main source of 
lymphocytes of the peripheral blood and, as part of the reticuloendothelial system, 
serve as a defense mechanism by removing noxious agents such as bacteria and 
toxins; they probably also play a role in antibody formation. Sometimes called, 
incorrectly, lymph gland.  Called also lymph or lymphatic follicle and lymphatic 
nodule. 

Morbid:  Pertaining to, affected with, or inducing disease; diseased. unhealthy; 
unwholesome.  Characterized by preoccupation with gloomy or unwholesome 
feelings or thoughts. 

Morbidity:  A diseased condition or state.  The incidence or prevalence of a disease or of 
all diseases. 

Nosocomial:  Pertaining to or originating in a hospital. 

Ocular:  Pertaining to the eye.  Called also ophthalmic and optic. 

Oropharynx:  The part of the pharynx between the soft palate and the upper edge of the 
epiglottis. 

Osmotic pressure:  The pressure required to stop osmosis through a semi permeable 
membrane between a solution and a pure solvent; it is proportional to the 
osmolality of the solution. 

Pathology: Is the branch of medicine treating of the essential nature of disease, especially 
of the changes in body tissues and organs that cause or are caused by disease and 
the structural and functional manifestations of a disease. 

Periorbita:  The periosteum of the bones forming the orbit, or eye socket. 

Periosteum:  A specialized connective tissue covering all bones of the body, and 
possessing bone-forming potentialities.  Periosteum also serves as a point of 
attachment for certain muscles. 

Pharyngitis:  Inflammation of the throat (pharynx); called also sore throat. 

Pharynx:  The musculomembranous cavity, about 12.5 cm (5 inches) long, behind the 
nasal cavities, mouth, and larynx, communicating with them and with the 
esophagus.  The pharynx may be divided into three areas: the nasopharynx above; 
the oropharynx in the middle, behind the mouth; and the laryngopharynx below.  
The nasopharynx is connected with the nasal cavities and provides a passage for 
air during breathing.  The oropharynx and laryngopharynx provide passageways 
for both air and food. 
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Preauricular:  In front of the auricle of the ear. 

Purulent:  Pertaining to or consisting of pus, containing pus. 

Reservoir:  A storage place or cavity.  An alternate or passive host or carrier that harbors 
pathogenic organisms or parasites without injury to itself and serves as a source 
from which other individuals can be infected. 

Symptom: Any indication of disease perceived by the patient. 

Syndrome: Is a combination of symptoms that either result from a single cause or occur 
together so commonly that they constitute a distinct clinical picture. 

Syndromic: Occurring as a syndrome. 

Vector:  In epidemiology, is a carrier, especially an animal such as an arthropod that 
transfers an infective agent from one host to another. 

Zoonosis:  A disease of other animals that is transmissible to humans under natural 
conditions. 
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